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TEE INTERFERENCE EFFECTS OF A BODY ON THE SPANWISE LOAD

DISTRIBUTIONS OF TWO 45 ° SWEPTBACK W_GS OF ASPECT

RATIO 8.02 FROM LOW-SPEED TESTS I

By Albert P. Martina

St_RY

Tests of two wing-body combinations have been conducted in the

Langley 19-foot pressure tunnel at a Reynolds number of 4 x 106 and a

Mach number of 0.19 to determine the effects of the bodies on the wing

span load distributions. The wings had 45 ° sweepback of the quarter-

chord line, aspect ratio 8.02, taper ratio 0.45, and incorporated

12-percent-thick airfoil sections streamwise. One wing was untwisted

and uncambered whereas the second wing incorporated both twist and camber.

Identical bodies of revolution, of i0:i fineness ratio, having diameter-

to-span ratios of 0.i0, were mounted in mid-high-wing arrangements. The

effects of wing incidence, wing fences, and flap deflection were deter-

mined for the plane uncambered wing.

The addition of the body to the plane wing increased the exposed

wing loading at a given lift coefficient as much as lO percent with the

body at 0° incidence and 4 percent at 4° incidence. The body-induced

lift disappeared near maximum lift in both cases. The bending-moment

coefficients at the wlng-body Juncture were increased about 2 percent

with the body at 0° incidence, whereas the increases were as much as

lO percent with the body at 4° incidence.

The spanwlse load distributions due to the body on the plane wing

as calculated by using a swept-wing method employing 19 spanwise lifting

elements and control points generally showed satisfactory agreement with

experiment. The spanwise load distributions due to body on the flapped

plane wing and on the twisted and cambered wing were dissimilar to those

obtained on the plane wing. Neither of the methods of calculation

which were employed yielded distributions that agreed consistently with

experiment for either the flapped plane wing or the twisted and cambered

wing.

ISupersedes declassified NACA Research Memorandum LSIK23 by

Albert P. Martina, 1952.
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INTRODUCTION

Theoretical studies have shown that the effects of a body on the

wing spanwise load distribution are dependent upon the angle of attack 3

the angle of incidence between the wing and bodyj the cross-sectional

shape and size of the body, the vertical position of the wing on the

body_ and on the forebody length in cases where the length is extremely

short. Experimental data showing these effects are relatively meager.

The results of an investigation which shows the variation of body effects

with wing vertical position on an unswept wing are reported in refer-

ence i. Results of investigations made to show the body effects on two

sweptback wing-body combinations for one vertical wing position are

given in references 2 and 5. All these investigations were carried out

in the low-to-moderate lift-coefficient range at low speed.

Several investigators have undertaken the calculation of the body

effect both on unswept wings (refs. 4 to 8) and on swept wings (refs. 9

and 10), although practically no direct experimental verifications of

these methods are available.

Consequently, an investigation was conducted in the Langley 19-foot

pressure tunnel to determine the body effects on the spanwise load

distributions of two sweptback wings and to determine whether the body

effects could be estimated through the use of existing methods. The

wings were similar in plan form; one was plane and uncambered while the

second was twisted and cambered for a design lift coefficient of 0.7.

The investigation was made for one vertical position of the wings on

the body. The influence on the body effects of incidence, of upper-

surface wing fences_ and flap deflection were investigated on the plane

wing. Results of other investigations on the plane uncambered wing are

reported in references ii to 13.

COEFFICIENTS AND SYMBOLS

The data are referred to the wind axes, the origin of which is located

in the plane of symmetry at 25 percent of the wing mean aerodynamic chord.

Standard coefficients and symbols are used throughout and are defined

as follows:

SO I .0 c (b_2)C L lift coefficient, Lift or c z c d
qSw

c Z section lift coefficient, Cn COS(a + 6) - Cc sin(_ + 6)
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c n

c
c

section normal-force coefficient,

section chord-force coefficient,

<Su

(z/C)max(zj_o_x(Srsf)_(z)

Cb exposed wing-root bending-moment coefficient,

Jo1 CEn cos(E - _O.lOb/2) + cc sin(6 - tO.lOb/2 -
.lO

S

t

x

Y

Y

pressure coefficient,
H -P

airfoil thickness

longitudinal coordinate from local leading edge parallel to
local chord line

lateral coordinate perpendicular to plane of symmetry

vertical coordinate normal to local chord line

longitudinal center of pressure of exposed wing load normal to

chord at O.lOb/2 measured from 0.25c' and parallel to chord

at O.lOb/2

lateral center of pressure of exposed wing load normal to chord

at O.lOb/2 measured perpendicular to plane of symmetry

S w

c

c'

c

wing area

local chord

2 _0 I'0mean aerodynamic chord, _w

Sw

mean geometric chord, -6- t_
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b wing span

H free-stream total pressure

p local static pressure

pV 2
q dynamic pressure, -_

p mass density of air

V free- stre am ve loc ity

angle of attack of root chord

geometric angle of twist of any section referred to the plane

of symmetry (negative if washout)

iw angle of incidence 3 angle between wing-root chord and the axis
of body (positive if angle of attack of root section is

greater than that of body)

incremental value

Sub script s:

A

u

f

r

0

s

max

e

upper surface

lower surface

forward of maximum thickness

rearward of maximum thickness

zero lift

section at plane of symmetry

maximum

effective

MODEL AND APPARATUS

The two wings in this investigation had 45 ° sweepback of the

25-percent-chord line_ aspect ratio 8.02_ and taper ratio 0.45. Further

-T°
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details are given in figure i. The wings were of composite construc-

tion_ each consisting of a solid steel core upon which was bonded a

layer of 50-percent-bismuth and 50-percent-tin alloy. The surfaces

were machined and finished to aerodynamically smooth contours which were

so maintained throughout the periods of testing. One wing was untwisted

and incorporated NACA 631A012 airfoil sections in the streamwise direc-
tion. The second wing embodied NACA 631A012 thickness distributions

in the streamwise direction but was cambered and twisted according to

the variations shown in figure 2. The mean camber line_ which is

described in table I_ was a slightly modified a = 1.0 mean line. The

wing sections were twisted about the 80-percent-chord line; hence this

line had no dihedral.

The flap configuration which was investigated on the plane wing is

shown in figure 3. All the flaps were constructed of steel; the trailing-

edge flaps were mounted by means of steel angle blocks and the leading-

edge flaps, by means of wooden blocks (fig. 3, section A-A). The latter

mounting was used to avoid damaging the wing contour near the leading

edge. The upper-surface fences used on the plane wing, which are shown

in figure l, were made of sheet steel and were attached to the wing by

means of angle brackets located on the outboard sides of the fences.

The bodies of revolution used in these tests were identical, having

central sections of constant diameter joining the elliptic forebodies and

parabolic afterbodies. (See fig. 1.) The bodies, which were constructed

of laminated mahogany, had fineness ratios of lO, and maximum diameters

of l0 percent of the wing spans. The wings were mounted in mid-high-wing

arrangements with the wing-root chords set at zero incidence with respect

to the body axes. An additional incidence angle of 4 ° was tested on the

plane wing with the leading edge of the root chord maintained at the

same vertical position from the body axis as for zero incidence. (See

fig. 1. )

TESTS

The tests reported herein were conducted in the Langley 19-foot

pressure tunnel at a pressure of approximately 21 atmospheres. All
3

tests were conducted at a Reynolds number of 4.0 × 106 based on the mean

aerodynamic chord, which corresponds to values of dynamic pressure and Mach

number of approximately 125 pounds per square foot and 0.19, respectively.

Force measurements were obtained for an angle-of-attack range

from -3.5 ° to 31° by means of simultaneous recording balances. Pressure

measurements_ which were made independently of force measurements_ were
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recorded by photographing multitube tunnel manometers and thus all the

pressures were recorded simultaneously. The pressure data were reduced

to coefficient form by means of an NACA combination film reader and

computer.

Pressure-distribution measurements were made over the left wing of

each model by means of surface orifices located spanwisej as shown in

figure 4, and chordwise 3 as indicated in table II. The orifices were

formed from O.040-inch monel tubing embedded in the bismuth-tin layer.

The tubes connecting the orifices to the tunnel manometers were con-

ducted from each model through a tube transfer fairing located at

20.4 percent of the right wing span on the lower wing surface 3 as seen

in figure 5. Not only were the effects of these fairings upon the

orifice stations at the planes of symmetry believed to be negligible,

but preliminary tests showed that their effects upon the wing charac-

teristics were negligible. As seen in table IIj the orifice stations

at 0.03b/2 on the wings were incomplete_ consequently, additional measure-

ments were made by means of a static-pressure survey tube maintained

approximately 0.0035c from the wing contours and alined as nearly as

possible with the local flow.

Since reductions in loading occur near the wing-body junctures,

additional measurements were made in an attempt to obtain loadings at

spanwise stations that were outside the immediate influence of the

junctures. These additional measurements were made at 0.15b/2. Upper-

surface pressures on the plane wing were measured by means of orifices

located in a multitube plastic tape that was cemented to the wing surface.

No pressures were measured on the lower surface inasmuch as a fairly

accurate interpolation of the lower-surface loading was made possible by

the small variation of the lower-surface loading between the i0- and

30-percent-semispan orifice stations. It was only possible to make these

additional measurements for the wing-body combination having 4° wing

incidence. On the twisted and cambered wing, the additional pressure

measurements were made by means of a copper tube belt attached to both

the upper and lower surfaces. The measurements were made With the

body at zero incidence and without the body.

With the body present, no flap pressures were measured at the

O.lOb/2 station. Inasmuch as the lower-surface pressures at O.lOb/2

with body were almost identical to the lower-surface pressures at the

plane of symmetry without body: the flap pressures at O.lOb/2 with body

were assumed to be the same as those at the plane of symmetry without

body.
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CORRECTIONSTODATA

All force data were corrected for support tares and interference
and for air-stream misalinement. The jet-boundary correction to the
angle of attack was determined by meansof reference 14 and was as
follows:

Z_ : 0.387CL

The jet-boundary correction to the angle of attack applied to the
results obtained from pressure-distribution measurementswas the sameas
that applied to the force data. No corrections were applied to take
into account the spanwise variation of the jet-boundary-induced angle
or the model twist due to air load. Calculations of the induced angles
and measurementsof the plane wing twist due to air load indicated that
the variations of these angles between the root and tip not only were
small and of the sameorder of magnitude (0.2 ° at CL = 1.O) but were
opposite in sign and thus tended to cancel each other so that the
resultant variation was negligible.

The spanwise load distributions obtained from integrations of the
chordwise pressure-distribution data were corrected for a spanwise
variation of stream angle and3 in the case of the plane wing_ for model
and experimental inaccuracies, as explained in reference ll. The lift
distribution applied to the results for the configurations with the
plane wing is given in figure 6(a) and was determined from the experi-
mental section-loading curves. The lift distribution applied to the
results for the configurations with the twisted and camberedwing is
given in figure 6(b) and was calculated from the results of air-stream
surveys, as indicated in reference iI.

RESULTSANDDISCUSSION

The addition of a body to a wing alters the loading at a given wing
section as a result of the body-induced angle of attack which arises
from the flow componentnormal to the longitudinal axis of the body.
The incremental loading_ when separated into componentsdue to angle of
attack and to angle of incidence (as was done in ref. 7), can be
expressed thusly:

c cAc z-= &c ---+ _e + _ c
c Zo c Z Z

(i) " 'l""
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where

c c at and i w = 0 (2)
Acz o _ = Z wing-body Z _ wing a°s

the incremental section basic loading due to wing vertical position on

body (asymmetry) }

_ (c __---)(_) - (c c) at a = c°nstant_e _ Z = cz wing-body Z wing

the incremental section loading due to angle of attack9

(3)

• (C "[C C C at cL = constant

the incremental change in section loading due to a change in wing

incidence;

(4)

and,

_e = a - SOs , the effective angle of attack

iWe = iw - SOs , the effective angle of incidence

(5)

(6)

Span Load Due to Angle of Attack for Plane Wing

The body effects upon the wing span load distribution are clearly

perceptible as far outboard as the 90-percent-semispan station in the

moderate lift coefficient range_ as seen in figure 7. Aside from

increases in the section lift-curve slopes in the linear lift range_ it

appears from the data of figure 8 that the body caused no significant

changes to the section characteristics. The body effects on the section

loading generally disappeared as each section reached maximum lift. This

behavior would be expected inasmuch as the prime effect of the body was

to induce a flow angularity. The analysis of body effects, consequently,

generally includes only angles of attack up to 12.9 ° inasmuch as many of

the wing sections were operating near or beyond maximum lift above this

angle of attack.

-WF-

t_
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A comparison is presented in figure 9 between the calculated and

experimental slopes of the incremental loading curves - that is, the

derivative in the second term of equation (1) - and in figure lO between

the calculated and experimental loading increments for several angles

of attack. The calculated values were obtained by using an unswept-wing

method (ref. 7) and two swept-wing methods; namely, that of reference l0

and a method hereinafter referred to as the 19 X 1 method which is

described in appendixes A and B. In the 19 x 1 method, the body effect
is treated as a twist distribution and the calculations are carried out

directly for the actual wing. The distribution of lifting elements and

control points (19 each) used in this 19 x 1 method was shown in refer-

ence 12 to define accurately the loading on this wing and, furthermore,

_ould be considered the minimum number for taking into account the body

effects. In applying the method of reference I0, the calculations were

made as outlined therein, with the exception of the inflow correction to

the span load 8 which accounts for some of the increase in velocity

about the body. This factor 8, as applied herein, was computed by means

of the equations given in reference. 15 at the maximum diameter of an

ellipsoid of lO:l fineness ratio. The span load calculated by this method

is somewhat too large because the correction factor 8, based on an

ellipsoid, is larger than the correction factor for the actual body used

in these tests. This fact can be seen in reference 16 by comparing the

-V x

induced axial velocity _ on the surface at the midpoint of an ellipsoid

of fineness ratio i0:i with that at 0.32 of the length (corresponding to

the wing leading edge at the Juncture) of the nearly cylindrical body with

rounded nose and pointed tail having the same fineness ratio. In the case

of the nearly cylindrical body, which is almost exactly similar to the body

used in these tests, 8 = 0.017, whereas 5 = 0.021 for the ellipsoid.

The calculations necessary to obtain the spanwise variation of the

factor 8 for the exact body were deemed too lengthy for the additional

refinement that would be gained here. The values calculated by means of

the 19 x 1 method and shown in figures 9 and lO agree satisfactorily with

experiment both in magnitude and in the manner of variation, except near

the wing-body Juncture where the calculated values substantially exceeded

the experimental values. The values calculated by means of reference 10,

however, showed some agreement at the Juncture but considerably under-

estimated the body effects over the remainder of the span. It is of

interest to note in figure 9 that the body effects on the spanwise loading

calculated for an unswept wing of the same aspect and taper ratios as the

wing of the present tests by using the method of reference 7 are nearly

identical to those calculated by the 19 x 1 method. This result tends

to indicate, at least theoretically, that for this case sweep has second-

order effects on the body influence, which may result from the high aspect

ratio. Since a comparatively small depression in the loading over the

body width is implicit in the 19 x 1 method of calculation, some over-

estimation is to be expected inasmuch as the loading over the equivalent

wing area covered by the body is greatly reduced. In this case, the
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loading at the plane of symmetry was one-half the wlng-alone value at

the plane of symmetry. Preliminary calculations in which a reduced lift-

curve slope at the plane of symmetry was used indicated that the calculated

values of the body-induced loading near the Juncture were more nearly in

agreement with the experimental trends. These calculations were carried

out by using the 19 x 1 method, but it is believed that a greater number

of spanwise points would be necessary to define the discontinuity in the

loading. It thus appears highly probable that the use of the 19 x 1 method

without making allowance for the reduced lift-curve slopes over the body

width will result in overestimates of the loading in the proximity of the

wing-body Juncture for any configuration. Additional overestimation in

the total increments (fig. I0) arises from the fact that a positive shift

in the angle of zero lift occurs at the iO-percent-semispan station from

adding the body, a shift which most methods of calculation cannot take
into account.

The shift in the angle of zero lift at the lO-percent-semispan

station is attributable to the asymmetrical vertical position of the

wing on the body. In the realm of influence of the wing-body Juncture,

only a midwing position having zero wing incidence would experience no

change in the angle of zero lift for this wing-body combination since

the upper- and lower-surface pressure distributions would then be identical
at zero lift.

Further insight into the angle shift can be had by making compari-

sons between the chordwise pressure distributions at the lO-percent-

semispan station with and without body and with the plane-of-symmetry

station as done in figure ll. These distributions are all at m = 0.6 ° .

It can be seen in figure ll(b) that the body nearly effects a full reflec-

tion of the flow on the lower surface since the pressure distribution at

lO-percent semispan agrees quite closely with that at the plane of symmetry,

body off. The differences that do exist arise from the shape of the wing-

body juncture. The upper-surface pressure distribution, however, lies

between the pressure distribution at the plane of symmetry and that at

lO-percent semispan, body off (fig. ll(a)). This result can be ascribed

to the wing position on the body which, because of the small body thick-

ness above the wing, affects only a partial reflection of the type of

flow found at the plane of symmetry. In addition, there are localized

Juncture effects which tend to reduce the wing-alone velocities over the

forward part of the section and increase the velocities over the rear

part. These velocity changes which were produced by adding the body

result in a down load over the rear half of the section, as shown in

figure 12, which obviously reduces the section loading and shifts the

angle of zero lift positively.

Since the addition of upper-surface fences significantly altered

the wing-span load distribution at moderate angles of attack, the

_i
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influence of the body was determined for this configuration. The varia-

tions of the section loadings with angle of attack are presented in

figure 133 and the incremental span load distributions for several

angles are presented in figure 14 and compared with those for the wing

without fences. As a result of delaying separation over the tip sec-

tions, it can be seen in figure 14(c) that the addition of fences caused

the body effect to be increased over the tip sections at _ = 16.O °

with no significant changes indicated in the incremental loadings over

the inboard sections. The low value at the 55-percent-semispan station

at this angle results from the fact that this section stalled earlier

on the wing with fences than it did on the wing without fences.

Span Load Due to Wing Incidence for Plane Wing

The effects on the span load distributions of changing the wing

incidence are shown in figure 15 and on the variations of the load

coefficients with angle of attack in figure 16. No apparent slope

changes resulted from changing the wing incidence (fig. 16) although

the lift was reduced by the positive change in wing incidence. This

reduced lift results from the fact that for positive incidence the body

is always at a lower angle of attack than the wing, whereas at zero

incidence the body is at the same angle of attack as the wing. The

incremental changes in loading across the span are presented in fig-

ure 17(a) for several angles of attack together with the calculated

variations. The calculated variations were obtained by using the same

methods as in the preceding section. In general, similar results were

obtained as at zero incidence in that the values calculated by using

the 19 × i method showed good agreement with experiment at all points

except at 30-percent semispan, whereas the method of reference ii

slightly underestimated the incidence effect over the entire span. It

is of interest to note that the incidence effect (fig. 17(b)) is of
i

opposite sign to the angle-of-attack effect (fig. 9) and is about 15 times

larger.

Span Load for Plane Wing With Leading-

and Trailing-Edge Flaps Deflected

The effects of adding a body to the wing with leading-edge and

trailing-edge split flaps deflected are shown in figure 18. Aside from

the large loss of lift at the 10-percent-semispan station, no unusual

interference effects were noted. Inasmuch as there were 4° geometric

incidence between wing and body, in addition to the incidence produced

by flap deflection, the reductions in lift which occurred with the

addition of the body would be expected. In contrast to the results

obtained on the unflapped wing where the maximum loading increases

-T"
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occurred near the body (fig. 19), the loading increases over the sec-

tions near the body with trailing-edge flaps deflected were less than

one-half those obtained on the plane wing. Outboard of the 50-percent-

s_mispan station, the loading increases were as much as double those

obtained on the unflapped wing.

The incremental loadings due to the addition of the body are

presented in figure 20 for several angles of attack. Some of the

increments, for example at 0.10b/21 display practically no variation with

angle of attack and confirm the small changes in lift-curve slopes

previously noted. The calculated incremental loadings are also shown

and were based on equation (I) by using an assumed SOs = -ii.i °

together with the respective derivatives obtained from the two methods

of calculation (ref. i0 and the 19 × i method). The loadings calculated

by means of reference i0 showed fair agreement with experiment at all

angles of attack, whereas the loadings calculated by using the 19 × i

method showed fair agreement at the lowest angle of attack only. The

disagreement at the higher angles resulted from the overprediction of

the angle-of-attack effect.

Span Load for Twisted and Cambered Wing

The effects of the body on the variations of the section loadings

with angle of attack are presented in figure 21. The increases in

section lift-curve slopes near the body are less than half of those

obtained on the plane wing, as shown in figure 22, and indicate that the

amount of loading due to a change in angle of attack is less than one-

half that produced on the plane wing, whereas outboard the increases

were as much as doubled. The angle-of-attack effects on this twisted

and cambered wing appear to be similar to those of the flapped wing

(fig. 19). The incremental span load resulting from the addition of

the body to the wing as shown in figure 23 for several angles of attack

was rather small. The calculated incremental loadings are also shown

and were based on equation (1) by using an assumed _o = -5 .l° together

with the respective derivatives obtained from the two methods of calcula-

tion (ref. lO and the 19 x 1 method). Neither of the methods yielded

span load distributions that agreed consistently with experiment. This

result tends to indicate that the large amount of camber used in this

wing either compensates for or partly nullifies the flow component normal

to the body axis such that the variation of the body-induced angle with

angle of attack is greatly reduced. No explanation for this effect is

readily apparent.
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Overall Effects of the Body-Induced Lift on

the Wing-Body Combinatlon

The body effects on the section loadings have been considered in the

previous sections and now an evaluation of these effects in relation to

the entire combination will be made. A spanwise integration of the body-

induced loading (equation (1)) across the exposed wing yields the body-

induced lift which affects not only the lift but all those character-

istics which are dependent on the span load distribution.

The magnitude and variation with angle of attack of the body-induced

lift are shown in figure 2h along with the variations of body llft and

the exposed wing llft for the combination having zero incidence. The

exposed wing was taken as that part of the wing between lO- and

lO0-percent semlspan, inasmuch as the trace of the wing-body Juncture on

the lower surface of the wing extended almost to the lO-percent station.

The body-induced llft expressed as a fraction of the total llft is given

in figure 25, from which it can be seen that it is comparatively small,

never exceeding more than l0 percent of the total lift. This maximum

value occurred in the low-lift-coefficlent range, whereas the body-

induced lift gradually diminished with increasing lift coefficient and

disappeared at maximum lift (a _ 21o). It is of interest to note that

the body lift (fig. 24) was nearly the same as the lift carrled by the

same area on the wing without body except in the high-lift range.

The changes produced by the body effects on those characteristics

which are dependent on the span load are illustrated in figure 26, wherein

the changes to the bending-moment coefficients and to the longitudinal

and spanwise centers of pressure are presented as functions of lift coef-

ficient. The bending-moment coefficients (fig. 26(a)) at a given lift

coefficient were increased an average of 2 percent of the exposed wing-

alone bending moments throughout the lift-coefficlent range for the case

of zero incidence and gradually disappeared near maximum llft. The

changes to the spanwlse centers of pressure appeared to be comparatively

small (fig. 26(b)) and amounted to an inward shift that reached a maximum

of _ percent of the wing semispan in the high-lift range. The longi-

tudinal centers-of-pressure changes shown in figure 26(c) consisted of

forward shifts of the center of pressure which averaged about _ percent
of the wing mean aerodynamic chord.

The effects of increasing the wing incidence are sho_nby the

dashed curves in figures 25 and 26. The effects of increased wing

incidence were to reduce the relative amount of body-lnduced lift to a

maximum of 4 percent which occurred in the hlgh-llft range (fig. 25),

although the body-lnduced llft disappeared at maximum llft as at zero

incidence. The bending-moment coefficients at the wlng-body Juncture,

however, were increased as much as lO percent in the low-lift range

(fig. 26(a)) since the wing carried a greater load at the higher inci-

dence. The bendlng-moment increases disappeared at maximum lift.



14 NACA TN 3750

@@
D •

i •

CONCLUDING REMARKS

Tests at a Reynolds number of 4 × 106 of two wing-body combinations,

one consisting of a plane uncambered wing and the other of a twisted and

cambered wing, each having h5 ° sweepback and aspect ratio 8, and circular

cross-section bodies of fineness ratio i0 with the swings mounted in mid-

high-wing positions, have indicated the following results:

i. The addition of the body to the plane wing increased the exposed

wing loading at given values of llft coefficient as much as l0 percent

at 0° incidence and 4 percent at 4° incidence. The body-induced llft

in both cases disappeared near maximum lift. The bending-moment coef-

ficients at the wing-body junctures were increased about 2 percent with

the body at 0° incidence, whereas at 4° incidence the increases were as

much as i0 percent, although in both cases the increases disappeared

near maximum lift. The changes in the spanwise centers of pressure were

comparatively small and never exceed@d an inboard shift of more than

4 percent of the wing-alone values. The longitudinal centers of pres-

sure of the exposed wing were shifted forward an average of _ percent

wing mean aerodynamic chord.

2. Addition of the body to either the flapped plane wing or to the

twisted and cambered wing produced increases in the section lift-curve

slopes which over the inner 50-percent semispan were less than half the

increases produced by adding the body to the plane wing, while over the

outer 50-percent semispan the increases were as much as doubled.

3. The spanwise load distributions due to the body, as calculated

by using a swept-wing method employing 19 spanwise lifting elements and

control points agreed satisfactorily with experiment at all points

except the wing-body Juncture on the plane wing. The distributions due

to the body, as calculated by using the swept-wing method of NACA

Research Memorandum L51JI9 displayed fair agreement at the wing-body

Juncture but showed considerable underestimation over the remainder of

the span of the plane wing. The span load distributions due to the body

on the flapped plane wing and on the twisted and cambered wing were

dissimilar to those obtained on the plane wing. Neither of the methods

yielded span load distributions that agreed consistently with experiment

for either the flapped plane wing or the twisted and cambered wing.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field, Va., December 4, 1951. _ _?. __._.

/Z_ ./_ _ Albert P. Martina

Approved: /2"_/_f_.,'6,L"(.--. _ Aeronautical Research Scientist

- f/  ugeneC. aley
Chief gf Full-Scale Research Division

Jbb
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APPENDIX A

CALCULATION OF THE BODY-INDUCED ANGLE OF ATTACK

IN THE 19 x i METHOD

For the purposes of this calculation the body was assumed to be

replaced by an infinite cylinder having the cross-sectional shape of

the body used in these tests. With the cylinder at an angle of attack_

the following velocity components_ perpendicular and parallel to the

cylinder axis can be written in terms of the free-stream velocity:

where
V

V free-stream velocity

% angle of attack of body

V cos _B velocity component parallel to body axis

V sin aB velocity component normal to body axis

As a result of the normal velocity component V sin _B an addi-

tional velocity vn is induced by the displacement of the normal flow

about the body thusly: jz

V sin aB

sin aB + vn

Y

v_
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so that the velocity vector diagram which includes this component is

as follows:

%

V
n " _B

where _ is the body-induced angle of attack and can be expressed as

vn cos aB

tan _ = V + vn sin aB

For a circular cylinder, the total velocity parallel to the

at any point due to the normal flow is

(A1)

z axis

2(y2_z2)
V sin sB + vn = V sin _BI ! 2 + z2)2 +L_y

where R is the body radius. The incremental velocity vn (from

equation (A2)) becomes:

Vn = V sin Bh(y 2 + Z2)22

(A2)

(A_)

and the body-induced angle becomes by substitution of equation (A3)

into equation (AI)

= tan -1,

sin aB cos _BL(y2 + z2)2

N

V + V sin2aB R2(y2 - z2)!

k(yS 2i2 i+
zj j

(A4)
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@

For small aB

cos aB m i

sin aB _ _B

tan aB m aB

and equation (A4) becomes

but

<< i for small

so that equation (A5) can be written:

%

(As)

(A6)

In assuming an infinite cylinder the tangential velocity incre-

ment vtJ due to the finite body length is neglected. The consequences

of this are shown in the vector diagram below for the body used in these

tests:

v co_ a% vt

! V _v t cos aB
¢

L_



18 NACA TN 3730

It can be seen that the tangential velocity increment vt_ reduces

the body induced angle from _ to _' and increases the free-stream

velocity by vt cos aB. The body-induced lift then would be decreased

by the former and increased by the latter (dynamic pressure increased)

As a result of using the linearized equation (A6) in computing the body-

induced angle of attack for the infinite cylinder_ however 3 the amount

of overprediction of the body-induced angle of attack nearly accounted

for the velocity increment vt at the higher angles of attack for these

calculations. The amount of overprediction of the body-induced angle is

shown below:

12

_, deg 8

0

Linearized _inf.c_

(equation (A6))

Exact _inf.cyl.(equati°n (A4))

i i 1 ___l_ 1 I
5 l0 15 20 25 30

aB1 deg

For example at aB = 12"9° and 2y = 0.i0, _exact = 5"83o (fromb

equation (A4)) whereas _linearized = 6"20o (from equation (A6)). The

c due to the body would be approximately
loading increment Acz _

0.016 smaller by using _exact instead of _linearized" The correction

to the dynamic pressure (due to vt cos _B) would increas_ the loading

increment by 0.028. The net result of these two corrections would be

0.012 which for this extreme case was considered small enough to warrant

the use of the linearized equation (A6) in computing the total body

effect.

" : . l
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APPENDIX B

CALCULATION OF THE BODY EFFECTS BY THE 19 X 1 METHOD

The body-induced load distributions were calculated by using

19 horseshoe vortices distributed along the 0.25c line at 2y = 0,
b

+0.i0, *0.203 ., +0.90. The downwash induced by these vortices at

the 0.75c line of tbm wing at these same spanwise stations was set equal

to the angle of attack of the wing at the 0.75c line. Since the loading

was symmetrical, the loading at the corresponding points in each semi-

span was identical so that lO equations in the lO unknown loadings

(czc) as-- resulted follows:

\ _-/n

n=10 K Cczc'_ (BI)

(a0.75C)n = _ n\ _----_n

where

n

!
spanwise station, (n = 1

at 2Y=0")b

\

at 2y = -0.90 and n = i0
b

K n downwash factor at 0.75c line.

This method can be considered as a modified Falkner method for calculating

the wing spanwise loading and follows a procedure similar to those

indicated in references 17 and 18.

The bod_effect was treated as a twist distribution so that the

angle of attack at the 0.75c line at each station was set equal to the

body-induced angle of attack

(_0.75C) n = aB(a_B) n
(B2)

where aB = a- iw and (a_B)n was obtained by using equation (A6)for

z = 0._R (mid-high-wing position) at spanwise stations corresponding

to those of the lifting elements. The body-induced angle was assumed to

L

"T"

t_
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be zero at the plane of symmetry resulting in the following angle

distribution:

JBody radius

c_B

0 "-t

0 2y/b i.0

Simultaneous solutions of the systems of equations (BI) gave the

following load distributions:

- Body radius

Z c iw:O

I _ _ _ _ _' C/iw

I

0 0

The loadings at any other angles of attack or angles of incidence were

obtained by direct proportion since the linearized -_- variation was

used.
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TABLE I.- ORDINATES FOR CAMBER LINE OF TWISTED AND CAMBERED WING

_I values are given in percent of chord_

x/c z/c a x/c z/c a

0

.5

.75

1.25

2.5
5.0

7.5
I0

15
2o

25

3o

35

0

•262

.369

•56g

.991

i. 689

2.256

2.731

3. 496

4.o7o

4. 525

4.874

5.132

4O

45

5o

55
6o

65

7O
75
8O

85

90

95
i00

5.31o

5.407

5.428

5.372

5.24o

5.o28

4.733

4.35o

3.861

3.257

2.490

1.522
0

alc] c Z=I" 0

L

_°
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TABLE II.- CHORDWISE ORIFICE LOCATIONS

[Locations given in percent of chord from leading edge]

Plane wing 3 twisted and cambered wing Plane wing Twisted and
cambered wing

All stations except 0.03b/2 0.03b/2 0.03b/2

Upper surface Lower surface Upper and Upper Lower
lower surface surface surface

0

.i0

.25

•50

1.25

2.50

5.oo

8.50

15.00

25.00

35.00

45.00

55.00

65.00

75.00

85.oo

95.oo

1.25

3.75

7.5o

15.00

25.00

35.oo
45.oo

55.oo
65.oo

75.oo
85.oo

95.oo

0

1.25

5.00

8.5o

15.00

25.O0 a

(b)

0

1.25

2.50

5.oo

8.5o

i5.oo

25.00

45.oo

65.oo

95.oo

1.25

3.75

7.5o

15_o

(c)

95.oo

aUpper surface only.

bMeasurements rearward of 0.25c made at O.lOc intervals with static

pressure survey tube.

CMeasurements rearward of 0.15c made at O.lOc intervals with static

pressure survey tube.
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/ /
/ /

i \ \i

\\\\ ,. _'_ 0437b/2

.... , \_66. 76 #- 21. 941

5327 _ _. _aerodynamic chord

0.25chord line- ""_,'_

9.87d

25

I_ Z 26

L.E.root chord Wing chord Wing chord°
/' .,r-plane,tw =0 ° .-plane,/w =4
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Figure i.- Geometric details of the plane wing-body combination and fence

arrangement. Wing taper ratio 0.4_; aspect ratio 8.02; wing area

14.021 sq it; no twist. All dimensions are in inches unless noted.
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(a) Design twist distribution.
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(b) Design lift coefficient.

Figure 2.- Design characteristics of the twisted and cambered wing.

NACA 631A012 thickness distribution used throughout.
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Figure 3.- Details of flap configuration. All dimensions are in inches
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Figure 5.- Wing-body combination as mounted in the Langley 19-foot pres-

sure tunnel for pressure distribution tests.
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Figure 6.- Corrections to the experimental load distributions due to

airstream misalinement.
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Figure 8.- Effects of body on the variation of the section load coeffi-

cients with angle of attack for the plane wing.
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0 Experimental
Calculated (reference II)

Calculated 19 x 1 method

(a) a = 4.7 °.

C

.2

.1

0

\

G

\

(b) o_ = 8.8 ° .

.3

C

.2

.1

0

\

\
k

\

\

\

� "., ..,

0 .2 .4 .6 .8 1.0
2 y/b

(c) cL = 12.9 ° .

Figure i0.- Incremental load distributions due to the addition of the

body on the plane wing and comparison with calculated distributions,

iw = 0 ° .
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(b) Lower surface.

Figure Ii.- Comparisons between the pressure distributions at O.lOb/2

with and without body and at the plane of symmetry of the plane wing.
c_ = 0.6 °.
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Figure 12.- Chordwise load distributions at 0.10"o/2 with and without

body. o_ = 0.6 °•
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Figure 13.- Effects of body on the variation of the section load coef-

ficients with angle of attack for the plane wing with upper-surface

fences at 0.575b/2_ 0.80b/2_ and 0,89b/2.
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Figure 14.- Effects of upper-surface fences on the incremental load

distribution due to the addition of the body on the plane wing.

iw = 0°. Upper-surface fences located at 0.575b/2j 0.80b/23 and

O. 89b/2.
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(a) Incremental loading for 4° change of wing incidence.
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(b) Incremental loading per unit change of wing incidence.

Figure 17,- The spanwise variations of the incremental load distributions

due to changing the wing incidence with respect to the body for the

plane wing and comparison with the calculated variations.
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Figure 20.- Experimental and calculated incremental load distributions

due to the addition of body on the plane wing. 0.45b/2 leading-edge

flaps and 0.50b/2 trailing-edge split flaps deflected 50 ° . iw = 4° .
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Figure 21.- Effects of body on the variations of the section load coef-

ficients with angle of attack for the twisted and c_mbered wing.
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Figure 22.- Effects of twist and camber on the variations with angle of

attack of the incremental loading due to the addition of the body.
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Figure 25.- Fraction of total lift of the plane wing-body combination

that is induced by the body on the exposed wing.
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_STRACT

Tests of two wing-body combinations have been conducted in the

Langley 19-foot pressure tunnel at a Reynolds number of 4 × lO 6 to

determine the effects of the bodies on the wing span load distributions.

The wings had aspect ratios of 8.02, taper ratios of 0.45, and incor-

porated 12-percent-thick airfoil sections streamwise. One wing was

untwisted and uncambered; the second wing was twisted and cambered.

Identical bodies of revolution of lO:l fineness ratio were mounted in

mid-high-wing positions. The effects of wing incidence, wing fences,

and flaps were determined for the plane wing.
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